
Many-Field Packet Classification for Software-Defined
Networking Switches

ABSTRACT

Cheng-Liang Hsieh
Southern IIlinois University
Carbondale, Illinois, USA

hsieh@siu.edu

Packet classification is a core problem for OpenFlow-based
software-defined networking switches, which required 38
packet header fields per flow to be examined against thou­
sands of rules in a ruleset. With the trend of continue
growing number of fields in a rule and the number of rules
in rule set, it will be a great challenge to design a high
performance packet classification solution with the capabil­
ity to easy update new rule and fields. In this paper, we
present a scalable many-field packet classification algorithm
with varying rulesets and its prototype implementation on a
graphics processing unit. The proposed algorithm constructs
multiple lookup tables and merges partial lookup results for
a small ruleset to accelerate the overall packet classification
process by using effective bit positions in a ruleset with three
selecting metrics: wildcard ratio, independence index, and
diversity index. Those lookup tables made with effective bit
positions are flat with a low rule replication ratio. Besides,
they are adjustable to meet different implementation environ­
ments for a good performance scalability between different
ruleset sizes. Our prototype on a single NVIDIA K20C GPU
achieves 198 MPPS, 186 MPPS, 163 MPPS throughput for
lK, 32 K, and lOOK 15-field ruleset.

Keywords

Packet Classification; GPU; SDN

1. INTRODUCTION
Software-defined networking (SDN) abstracts network in­

frastructures as programmable resources for network applica­
tions. OpenFlow-based software-defined networking switches
[15] require 38 packet header match fields and 6 pipeline
match fields to be examined for a flow. The requirements on
latency, throughput, update cost, and storage for a system
like OpenFlow Switch become stricter with the increasing
complexity of a ruleset. Hence, packet classification remains
an open and challenging problem for next generation network
device development.

Permission to make digital or hard copies of all or part of this work for personal or
c1assroom use is granted without fee provided that copies are not made or distributed
for profit or eonunercial advantage and that copies bear this notiee and the full citation
on lhe firsl page. Copyrighls for componenls of lhis work owned by olhers than ACM
must be honored. Abstracting wilh credit is permiued. To copy olherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request pennissions from pennissions@aem.org.

ANCS '16, March 17-18,2016, Santa Clara, CA, USA
© 2016 ACM. ISBN 978-1-4503-4 18 3-7/16/ 03 ... $15.00

DOI: http://dx.doi.org/1O.1145/2881025.2881036

13

Ning Weng
Southern Illinois University
Carbondal� lIinois, USA

nweng�siu .edu

Current solutions generate good system performance for
traditional 5-tuple packet classification problems [21] [9] [3] [10]
[1] but they do not scale weil to many-field packet classifica­
tion problems. Longer processing latency and bigger space
requirement caused by additional fields in a ruleset are ex­
pected. Many-field packet classifications with current 5-tuple
TCAM solutions are with high implement at ion cost due to
the bigger size of each rule and arbitrary field types in a
many-field ruleset. Many-field implementations with current
5-tuple decision-tree-based solutions will generate a deeper
and wider tree due to those additional fields and result in
impractical memory usage and inefficient tree traversal to
reach leaf nodes. Moreover, many-field implementations with
current 5-tuple decomposition-based solutions will increase
both process latency and storage requirement due to the
merge process for those those additional fields.

Several research groups observed these new challenges in
many-field packet classification and tried to come up with dif­
ferent solutions. On the one hand, some solutions avoid the
repeated packet classifications on the same packet at different
network nodes and free extra processing capacity. For exam­
pie, tagging approach [2] classifies packets at the edge switch
and inserts tags into packets for a fast packet forwarding in a
network. Moreover, hashing approach [16] classifies the first
packet in a flow and uses hash table lookups for the following
packets to improve the performance of packet forwarding.
On the other hand, some solutions improve the packet classi­
fication performance directly by designing new methods. For
example, decomposition-based approach [19] uses bit vector
with hash tables, decision-tree-based approach [6] uses 2-d
pipeline architecture with tree-to-pipeline mapping scheme,
and hybrid-based approach [4] uses effective bits with look-up
tables to lower the computation cost and improve the system
performance.

In this paper, we propose a scalable many-field packet
classification algorithm using multidimensional-cutting via
selective bit-concatenation (MC-SBC) for OpenFlow-based
SDN switches. MC-SBC uses simple lookup tables to avoid
computation divergence problems and leverages the high
efficient instructions in a massive computation platform for
a higher system throughput. Due to the sparsity and biased
rule distribution in a ruleset, MC-SBC is designed to quickly
find out few candidate rules using effective bits for the full
match as shown in Figure 1. In summary, there are three
main contributions of this work:

• MC-SBC demonstrates scalability on both the system
performance and rule replication ratio with varying
ruleset types and sizes.

Ruleset

Packets

� ------------- 1 : Offline Rule Programming
1 Selecting Metrics
1
1
1

Lookup Tables & Ruleset - - - - - - -t- - - - - - -
I

Pre-filtering

Can did ate Rules

& Packets

,
Full match

1
1
1
1
1
1
1
1
1
1

1
1

Online Packet Classification 1
______________ 1

Actions

Figure 1: The proposed packet classification architecture.
The system consists of off-line rule programming and on-line
packet classification. Rule programming is conducted for the
first time when a system is initiated or its ruleset is updated.

• MC-SBC designs a two-stage architecture with fea­
sibility and flexibility with easy implementations by
leveraging effective bit positions in a ruleset.

• A GPU prototype is implemented with packet classifi­
cation throughput of 198 MPPS and 163 MPPS for 1 K
and lOOK 15-field rules.

The remainder of this work is organized as folIows. Sec­
tion 2 gives background for related research es on packet clas­
sification problems and discusses the motivation of this paper.
Section 3 presents the proposed architecture. Section 4 dis­
cusses the selecting metrics of effective bits. Section 5 gives
an example of algorithm operations. Section 6 discusses
the complexity analysis and shows the experiment results.
Finally, the paper is concluded in Section 7.

2. BACKGROUND
In this section, we review major types of the packet clas­

sification algorithms to show the challenges and the trend
of packet classification research area. Then we present the
motivations for new many-field packet classification solutions.

2.1 Ternary Content-Addressable Memory So­
lutions

Ternary content-addressable memory (TC AM) is a special­
ized memory that can store and query three different types
of data: 0, 1, and * (wildcard). TCAM solutions (TCAMs)
employ multiple TC AM devices for each rule in a ruleset,
and construct a parallel matching architecture for the target
packet header fields with those pre-defined rules to fulfill

14

the line rate requirement. However, for a ruleset with more
packet header fields and bigger rule size, TCAMs need more
TCAM devices and a complicated hardware implementation.
Though TCAMs [9] [13] leverage hardware parallel computa­
tion power to generate high packet classification throughput,
they suffer problems such as high power consumption, high
manufacturing cost, and low scalability [21] [27] .

2.2 Thple Space Solutions
Besides of the hardware-based implement at ion like TCAMs,

many researchers [16] [25] also work on the software-based
algorithmic solutions for a better system scalability with
a lower implement at ion cost. Tuple space solutions are
software-based and they leverage the fact that the num­
ber of distinct tuples is much less than that of rules in a
ruleset. A tuple defines the number of significant bits in a
prefix match field, the nesting level and range ID of a range
field, and the existence of a value for an exact match field in
a ruleset. Tuple-space-based solutions efficiently compress a
ruleset by storing those valid bits of each field only. Besides,
tuple-space-based solutions perform the search of each tuple
independently and take advantage of parallelism. With the
growth field number in a ruleset, both tuple number and
tuple size increase. A longer processing latency could be
expected.

2.3 Decomposition-based Solutions
Decomposition-based solutions [7] [22] [28] work on each

field in a ruleset independently and merge the intermediate
results from different fields as the final match result. Since
each field is processed individually, more intermediate results
will be generated with the growth of field number in a ruleset.
The increasing merge stages of those additional fields in a
ruleset result in a bigger memory requirement and longer pro­
cessing latency. Recently, many-field decomposition-based
solutions [18] [17] leverage range-tree and hash functions to
process the 15-field packet classification.

2.4 Decision-tree-based Solutions
Decision-tree-based approaches [8] [11] [24] [28] analyze all

fields in a ruleset to construct decision trees for efficient
packet header lookup. For the matching process, decision­
tree-based solutions traverse the tree by using individual field
values to make branching decisions at each node until a leaf
is reached. Tree depth and rule duplication in a decision tree
affect the searching efficiency and memory requirement of
one implementation. Both of them increase with the growth
of field numbers which results in an exponential increase
of memory requirement and increasing processing latency.
Recently, many-field decision-tree-based solution [6] divides
a ruleset into several subsets which have their own individual
optimized decision trees and implement the design as a pipe­
line architecture on FPGA for good performance on a 12-
field ruleset. An improved algorithm [20] leverages similar
techniques and designs fine grained processing elements with
a 2-dimensional pipelined architecture on FPGA with better
performance for a 15-field ruleset.

2.5 Motivation of Many-field Packet Classifi­
cation Solutions

New applications like OpenFlow Switch examine more than
15 fields in multiple lookup tables to categorize incoming
packets into different flows [16] . For the development of

Kules Fjeld 1 Fjeld � Fjeld :3
rl UUlU 11U1 lUU1
r2 1001 000'" 100'"
r3 lUlU UllU lllU
r4 1110 1010 10"''''
r5 0000 "'''''''''' 0000
r6 ",,,,,,"t< 110'" 101'"
r7 lUu1 1ulU UUUU
rs 1111 110* 0000
rg 0101 1010 101'"
rlO """"" 0110 101"
rll UUU1 U11U UUUU
rl2 0010 110'" 101"
rl3 0100 000'" 1110
r14 1100 0010 000
rl5 1110 000 0000
rl6 0011 110'" 101'"

Table 1: An example ruleset of sixteen rules with three fields

advanced network services such as SDN and NFV, the number
of packet header fields in a rule are expected to grow in the
future. However, the growing field number in a ruleset poses
new challenges to packet classif'ication problems in term of
system throughput and storage requirement. To address the
scalability problem and improve the system performance of
many-field packet classification problem, it is necessary to
lower the computation complexity with the number of rules
and fields in a ruleset. In this paper, MS-SBC leverages the
statistical characteristics between different bits in a ru leset to
pre-compute lookup tables to lower computation complexity
with the growth of field number and ru leset size.

The performance of a network application is affected by
not only the implemented algorithm but also by the host
platform. Heterogeneous system architecture is proposed
to generate high system throughput with low implementa­
tion cost and high flexibility. However, it is a challenge
to align different computation resources in a heterogeneous
system. GPU is a typical commercial off-the-shelf device.
Compared to other platforms such as Mulitcore General Pro­
cessor (GPP) or FPGA, GPU supports fewer instruction but
has more computation units to run in parallel. Besides, using
GPU to implement an algorithm is a purely software-based
solution and the implement at ion does not change GPU's
hardware characteristics. Hence, GPU platforms provide
a high flexibility on how to implement an algorithm and a
high port ability to move the designed algorithm to another
GPU with similar architecture. With a proper alignment
between the algorithm and GPU, a GPU can generate high
throughput. All these benefits make GPU attractive for
packet classification problems.

3. MC-SBC ARCHITECTURE
Packet classification multidimensional-cutting via selective

bit-concatenation (MC-SBC) is implemented as a two-stage
classification system with an off-line rule programming pro­
cess to construct the lookup tables for the foUowing on-line
packet classification process as shown in Figure 1. This two­
stage system shifts the computation cost to off-line stage
to generate lookup tables to be used later to increase the
system performance at on-line stage by doing simple lookups
instead of data extracting and composition.

15

Algorithm 1: The pseudo code of off-line rule pro­
gramming process.

input : A many-field ruleset, R
output: Effective Bit Sets, EES

1 for All bits in a ruleset do

2

3

4

// Get wildcard ratio
Ri Rj Get p ••

' ;
// Get diversity index
Get DivRi .

,

// Get indepedence index
Get IndRi,Ri .

,

// Generate selection factor
5 SFRi,Rj

= a · p.R"i,Rj + ß · DivRi + 'Y' IndRi,Rj;
6 end
7 Mark all bits as unused;
8 while Unused bits are available do
9 for All unused bits in a ruleset do

10 if SFRi,Rj is maximum then
11 if p.r;i ,Rj > Pth and DivRi > Divth

IndRi,Rj > Indth then

I AppendR\Rj to current EBS;
Mark R', RJ as used;

end

12
13
14
15
16

end
end

17 Move to next EBS;
18 end

3.1 Off-line Rule Programming

and

Off-line rule programming stage shifts the computation
cost of field traversals in many-field packet classification
using the pre-computed lookup tables. It stores the partition
results of a ruleset into these lookup tables with rules' ID and
uses effective bits as indices to access them. These effective
bits are selected to provide the best discrimination between
rules in a ruleset. Since only few effective bits are used,
those bits could be quickly collected from a packet header.
A lookup generates preliminary packet classification results
without fuH comparison between rules and packets.

MC-SBC leverages wildcard ratios, independence indices,
and diversity indices to identify effective bit positions in a
ruleset and uses these bits to generate lookup tables. MC­
SBC makes one lookup table by using one set of the effective
bit positions of each rule. To save the required memory space
and improve the processing latency, MC-SBC constructs
multiple lookup tables with high independence to each other.
The intermediate lookup results from each table are merged
to become a much smaHer candidate rule subset for the fuU
match process in on-line packet classification stage.

To update lookup tables with low cost, each lookup table
is stored discretely in system memory with two reference
tables: the quantity table and the address table. The address
table teUs the memory address of each location in a lookup
table. The quantity table teils the number of rule IDs in
that location. Once there is an update in a ruleset, only
those affected locations are updated. For example, if we want
to add a new rule into a ruleset. By using the pre-defined
effective bit position set, we can find the affected locations for

rg

header field's value to make branch decisions at each node
until a leaf node is reached. MC-SBC saves the time to access
each field 's value with the concatenation value of those
effective bits to make branch decision. Instead of conducting
at most two separate lookups on the data structure used in
HyperCuts to reach a leaf node, MC-SBC only needs one
lookup on its data structure.

r6 3.2 On-line Packet Classification

rs

(a) HyperCuts

I RUI�set, I
+

Effective Bits:
Fieldl Bit3
Field2 Bit2
Field3 Bit2

I

(b) MC-SBC

Figure 2: The examples of (a) HyperCuts and (b) MC-SBC
data structures for a ruleset as in Table 1. Both algorithms
are set up to have at most 3 rules in a leaf node with minimum
rule duplication ratio.

this new rule. The address table teils where to find the data
of rule IDs in memory and the quantity table teils how many
rule IDs are stored there. MC-SBC modifies rule ID data at
this location without interference to others then updates the
quantity table.

The pseudo-code of rule programming process is shown
in Algorithm 1 where R is the target ruleset, Ri is the bit
value of i-th bit, SFi,j is the selection factor for i-th and

j-th bits in a ruleset. p.R"i ,Rj is the wildcard ratio of i-th and
j-th bit in a ruleset and the threshold is Pth . DivRi

is the
diversity index of i-th bit in a ruleset and the threshold is
Divth . IndRi,Rj is the independence index of i-th and j-th
bits in a ruleset and the threshold is I ndth .

An example of the data structures between HyperCuts [23]
and MC-SBC with a ruleset in Table 1 is shown in Figure 2.
HyperCuts finds the best way to cut a ruleset heuristically
with a bigger processing latency be fore constructing its data
structure. MC-SBC detects those effective bits by using
the statistical characteristics in a ruleset deterministically
and creates its data structure directly. Besides, more leaf
nodes could be found in this example for HyperCuts' data
structure resulting in insufficient memory usage. Moreover,
when verifying an incoming packet, HyperCuts checks each

16

The on-line packet classification contains two processes:
the pre-filtering process and the fuH match process. The
pseudo code of on-line packet classification is shown in Al­
gorithm 2 where r is the target rule and pkt is an incoming
packet. The pre-filtering process is designed to find the re­
lated rule IDs for an incoming packet. It takes the values
of effective bit position in a packet as lookup table indices
and checks with pre-computed lookup tables for prelimi­
nary results. To accelerate the merging process, rule IDs
in lookup tables are stored in order. Lookup results from
different tables are merged to come out candidate rule IDs.
All candidate rule IDs are then forwarded to the full match
stage.

The full match process is designed to report matches be­
tween packets and candidate rules. It checks candidate rule
IDs and retrieves both packet data and rule data in fuH.
Then full match process compares them based on each field's
characteristics, such as pre-fix match, range match, and exact
match. During the matching process, if the match within a
field fails, the full match process will move to next candidate
rule immediately. Once there is a match with the highest
priority rule, it terminates the matching process and reports
this match. If there is no match, the fuH match process
conducts the default action.

Algorithm 2: The pseudo code of on-line packet
classification process

input : A many-field ruleset, Effective bit position
sets, Sam pIe space lookup tables

output: Match results

// Get packet's sampie value
1 for All packet in queue do
2 Get packet sampie value;

// Find sampie space lookups
3 Get the location of each space space based on

sam pIe value;
// Find common rule ID

4 for All Rule ID in each lookup do
5 I Get common rule from different lookups;
6 end

// Conduct full match
7 Retrive packet data;
8 for All candidate rules do
9 Retrice rule data;

10 if pkt = ri then
11 I Report match;
12 end
13 end
14 end

4. SELECTING METRICS FOR EFFECTIVE

BIT POSITION
Effective bits are those bits in a ru leset which partition the

ruleset evenly at best effort. At the off-li ne rule programming
stage, MC-SBC uses effective bits to cut a ruleset effectively
into subsets and generate lookup tables as the cutting results.
At the on-line packet classification stage, MC-SBC uses the
values of effective bits of a packet to find candidate rules
for the full match process. Hence, the aim of MC-SBC
is to make the subsets' sizes as small as possible and to
distinguish different rules in an efficient way. Therefore, for a
set of effective bit positions, any two of them are designed to
be with low wildcard ratio (P;�,j ») and high diversity (Div)
to lower the total number of duplicated rules. Besides, the
independence index (Ind) between any two bits is designed
to avoid possible bias of data structure. To find out effective
bits, MC-SBC leverages several key statistic characteristics
in a many-field ruleset as discussed in the following sections.

4.1 Wildcard Ratio
Wildcard ratio measures how many wildcard symbols (*)

appear on two chosen bit positions in a ruleset. A wildcard
(*) symbol in a bit position means it could be either 0 or
1. When an effective bit position encounters a wildcard
symbol in a specific rule due to the prefix and range fields,
this wildcard symbol has to be converted into 0 and 1 to
cover all possible matches and causes rule duplication. The
duplication of a rule increases sharply when some rules have
many wildcard symbols on those effective bits. For example,
a rule has its sampie value as 01 ** , and the rule ID of this
rule will be duplicated to subsets 0100, 0101, 0110, and 0111
in a sampie space. A higher wildcard ratio for a bit position
means there are many wildcard symbols on this bit position
and more duplications are produced. Therefore, more rules
will be duplicated and distributed to different subsets in
a lookup table, and it results in a higher replication ratio,
bigger averaged number of rules in a subset, and longer
processing latency.

MC-SBC chooses those bit positions with a lower wildcard
ratio when other parameters are the same, and examines
wildcard symbols for any two chosen bit positions in a ruleset
to avoid the impacts caused by wildcard ratio. MC-SBC uses
Equation 1 to estimate the combined wildcard ratio for any
two chosen bit positions where N is the number of rules in a
ruleset, i and j are for bit positions in a ruleset:

NCi,j)
PCi,j) __ *_* _ ** - N . (1)

4.2 Independence Index
Bit positions with low correlations to each other can draw

good distinctions between different rules when checking sam­
pie values, and independence index ensures that different bit
positions are with high independence to each other. MC-SBC
chooses a set of effective bit positions to guarantee the high
independence among them. MC-SBC determines the inde­
pendence index by the calculation for any two bit positions
by the following Equation 2:

Ind(i,j)
= L (2)

x=ü,l,* y=O,l,*

17

4.3 Diversity Index
Diversity index ensures the distribution of rule number

in the subsets is even for better performance and lower
processing latency. The diversity index of a bit position is
calculated by calculating the entropy of the distribution on
o and 1 as Equation 3:

. i Po Po PI I PI Dw =
- 1 _ P;

log 1 _ PJ - 1 _ PJ og 1 - PJ .
(3)

With a high diversity index, the subset sizes are distributed
more evenly, and if the subset sizes are with uniform distri­
bution, the processing latency under the worst case can be
greatly reduced for a given duplication.

The above indices can be generalized to the cases of many
bit positions (even two sets of bit positions) , and the cor­
responding definition can be derived in a similar way. The
proposed algorithm becomes more accurate when more bit
positions are evolved. However, more computational cost will
arise. Thus, we use these indices of one or two bit positions
to reduce the computational complexity and the general cases
for them are neglected here. Examples of how to implement
MC-SBC are discussed in the next section.

5. EXAMPLES OF MC-SBC IMPLEMENTA­

TION
Examples of MS-SBC algorithm are given in this section

to show how MC-SBC works as a two-stage system for many­
field packet classification. In the off-line rule programming
stage, an example is given to illustrate how MC-SBC detects
effective bits from a ruleset, uses those bits to create lookup
tables, and updates those tables when a ruleset changes. In
the on-line packet classification stage, an example is given to
illustrate how the prefiltering process uses a packet he ader
data with those pre-computed lookup tables and extracts
candidate rules by merging intermediate results from table
lookups.

5.1 Effective Bits Selection
MC-SBC uses only few effective bits in a ruleset to con­

struct lookup tables to accelerate the overall processing speed.
Since only those effective bits in the ruleset are used, MC­
SBC converts range match fields to prefix match fields with
an expanded value to avoid rule explosion problem but still
keeps the characteristics of each field for the packet clas­
sification. For an effective bit position set, MC-SBC finds
any two bit positions where Div is big, Ind is smalI, and
P** is small. Here, RCi,j) is denoted as the bit position j in
field i of a ruleset R. For the ruleset as in Table 1, RCl,l),
RCl,2), R(1,3), RCl,4), R(2,1), RC2,2), RC2,3), R(3,1), and R(3,3)
are with higher Div indices compared to other bits for an
effective bit position set. However, if R(l,l), RCl,2), R(1,3),
RCl,4) or R(2,1), R(2,2), RC2,3) are in the same set, a higher
P** index of that set is found and it results in a higher rule
duplication. Hence, there are at most two sets with up to 3
elements in each set: {RCl,l) V R(1,2) V R(1,3) V R(1,4), RC2,1) V
RC2,2) V RC2,3), R(3,3) V R(3,4)} or at most 24 sets with up to
2 elements in each set. To decide the of the elements in a
set, Ind indices are used and {RC2,3), R(3,3)}, {RCl,l), R(2,1)},
and {R(1,4), R(3,1)} are found as effective bit position sets
which have smaller Ind values. Thus those effective bit po­
sition sets are good to divide a ruleset into smaller groups

and construct lookup tables for each group by using other
effective bit position sets.

The effective bit position sets decide the size of a lookup
table, the number of groups for a ruleset, and how many
lookup tables can be generated for a ruleset. We take the
same matric as mentioned in Section 4 for differnt types of
ClassBench rulesets. Table 2 shows the number of effective
bits we can find after the rule programming on 5-tuple Class­
Bench rulesets. The available number of effective bits varies
from one ruleset to another but there are sufficient bits from
most fields. With this observation, a many-field synthetic
ruleset with sufficient bit position sets is assumed to generate
lookup tables with low dependence to each other.

Table 2: The experimental average number of effective bits
from the traditional 5 tuples for different rulesets

Group 1, Group 2, Group n,

G1 G2 Gn

5ample 5ample 5ample
5pace 1, e 5pace 1, 5pace 1, e

551 pie 551 551 pie

Figure 3: An example of the relations hip between ruleset,
groups, and sam pIe spaces. A ruleset is divided into several
small group. Each subset creates its own sam pie spaces.

5.2 Lookup tables construction
To improve system seal ability and performance, MC-SBC

divides a ruleset into sm aller groups with minimum overlaps
to each other and constructs lookup tables for each group
separately. MC-SBC collects the target rules by putting
rules with same attributes into a smaller subset and gives
each subset a group index. Later, when doing a lookup,
MC-SBC can only check those rules with same attributes
by using group indices without wasting resources on those
unrelated rules. For a big ruleset size, MC-SBC can generate
more groups to maintain system seal ability and performance.
When the groups of a ruleset are ready, MC-SBC creates
lookup tables for each group to maintain the system perfor­
mance and memory requirements. The relationship among a
ruleset, groups, and lookup tables is shown in Figure 3.

An example of the lookup table construction process is
shown in Figure 5 for a ruleset as in Table 1. From Sec­
tion 5.1, multiple effective bit position sets could be found
from the example ruleset and there are three sets with the

18

Field 1 bitO bin bit2 biß

Ruleset, R
rule rl

I 0 I 0 I 0 I 0 I L-...J....---'-,...L.--' L-...l...---'-T-'---'

Field 1 bitO bitl bit2

Figure 4: An example of the rule programming process on
subset construction. In this example, we use the effective set:
{R(2,3) , R(3,3)} to generate the group indices. The ruleset is
divided into several groups based the group indices.

best ruleset discrimination: {R(2,3), R(3,3)}, {R(I,I), R(2,1)},
and {R(I,4),R(3,1)}. The first set is used to generate the
group index and the following two sets are used to con­
struct lookup tables. For example, the concatenation value
of {R(2,3) and R(3,3)} in rule rI6 is 01 and it acts as a
group index as shown in Figure 4. Set {R(I,I),R(2,1)} and
{R(I,4), R(3,1)} are used for lookup tables. In the group 00,
there are 5 rules in it: rl, r2, r5, rs, and r15 and the lookup
tables are shown in Figure 5.

When a ruleset is updated, only those related groups and
lookup tables are updated and the following part remains
unchanged. To update these lookup tables, MC-SBC finds
which groups the target rule belongs to originally and re­
moves the target rule from all related locations in the sam pie
spaces. For example, to update rI5: [1110, 000*, 0000] as

r:5:[1110,000*,1111], rI5 belongs to group 00 but now r�5 be­
longs to group 01. Hence, rI5 has to be removed from lookup
tables of group 00 and r�5 has to be inserted into group 01.
Instead of checking all group 00 sampie spaces, rI5 is stored
in location 10 of the first lookup table and in location 11
of the second table of group 00 by its original sampie val­
ues. Hence, MC-SBC checks the address table to find where
to modify in the memory space, and updates the quantity
table with the updated number of rules in both locations.
Then MC-SBC inserts r�5 into in group 01 lookup tables and
updates the associated reference tables accordingly.

5.3 Pre-filtering
The pre-filtering process merges the lookup results from

each sampie space to extract candidate rules for the full match
process. It takes the group index and the sampie values of
an incoming packet to find out which group's lookup tables
should be used to retrieve rule IDs in a target location. The
pre-filtering process then extracts candidate rules from the

Field 1 Fjeld 2 Fjeld 3 Leaf Index

r1 [TEGITEE]ITEEl··
r2 ITEEJBRJITEEl··
rs [TEGrnJ]tEEEl··
rg ITEE][1ffitEEEl··

r1sITEGBRJtEEEl·· 1 Q

Leaf

00

01

10

11

Rule ID

rs

rv rs

r2, r 1S

rg

Figure 5: An ex am pIe of rule programming process on lookup
table construction for group 00 with 1'1,1'2,1'5, 1'8 and 1'15 in
it. The concatenation of bit values is used to lookup the
different locations in a sampIe space for the rule IDs. Rule
IDs with same sampIe values are kept in the same location.

lookup results of different sampIe spaces for the following
full match process.

For example, to verify an incoming packet py as shown in
Figure 6, MC-SBC takes the group index and table indices
from Py, and uses them to check the lookup tables for rule
IDs. Hence, py has 00 as its group index, 10 and 00 as
the table indices for lookup tables. Thus, MC-SBC gets 1'2,
1'15 from location 10 of first lookup table and 1'5,1'15 from
location DOof second lookup table in group 00. By merging
the lookup results, the pre-filtering process generates 1'15
as the candidate rule ID and passes it to the following full
match process.

5.4 Full match
To accelerate the matching process, the pre-filtering pro­

cess uses only the rule ID to find out the candidate rules for
the full match process for each incoming packet. However,
a lookup only shows the match result on those effective bit
positions between a rule and the incoming packet. To guar­
antee a match between packets and rules, a full comparison
between each header field of a packet and the candidate
rules is necessary. The full match process retrieves those
candidate rules' data and packet data in full for the matching
process and reports the matching results. With only few
rules, we are able to implement those efficient match algo­
rithms and derive the match results quickly at the full match
stage. Other solutions can be implemented at this stage for
a faster matching process without the restrictions caused by
the complexity on a ruleset. To demonstrate comparable
results with other algorithmic solutions, we only conduct the
linear search at the full match process.

6. RESULTS
In this section, the theoretical results of time and space

complexity are given to demonstrate how MC-SBC reduces
the complexity by using multiple lookup tables. Then the
experimental results are given to show the feasibility and
effectiveness of the proposed MS-SBC algorithm with the
comparison along with other existing many-field packet clas­
sification solutions.

19

1" Field 2'd Fjeld 3'd Fjeld

Sampie Space 0 Sampie Space 1

i ""--" ")10 -,...- " ")01 -GroupOO -

11 Silm ,Ip SnilCP 0 1 Sam[le Soace 1

I: Leaf Rules 1 Leaf Rules

00 rs L. 00 rs, r 1S
11 01 r1, rs 01 r1

I� 10 r2, r 1S 10 rg
11 rg 11 r2 r--r--r--

t t

Figure 6: An example of the pre-filtering process for packet
py. The subset index and sampIe values of packet py are
generated with effective bit position sets used for sam pIe
space construction. The group index is used to decide which
group's sam pIe spaces should be used for the look-ups. The
packet's sam pIe values are used for lookups in different sampIe
spaces. The intersection process in pre-filtering derives the
candidate rules and pass them to the following full match
process.

6.1 Theoretical Results
In this section, the time and space complexity are given for

both D2BS [28] and MC-SBC at first to show how MC-SBC
can lower the complexity by using multiple lookup tables.
Then a example with practical setting is given to show the
performance of MC-SBC.

6.1.1 Time Complexity

Assume there are m rules in a ruleset, R, and each rule has
h fields in it. For this ruleset, there are up to q effective bit
position sets and each set has up to k bits in it. When using
one set of effective bit position to partition R, R could be
divided into at most 2k subset. Due to wildcard symbol in
the ruleset, one rule could appear in multiple subsets. Hence,
the replication ratio caused by each effective bit is p and each
subset could have up to pk . m rules. When the partition
result is stored as a lookup table and uses the concatenation
values of those effective bits as indexes for the table, there
are up to q lookup tables for this ruleset and only rule's ID is
stored in the lookup table. Based on the selecting metric of
effective bits, the rule distribution between different lookup
tables is designed to be different. Hence, there are up to
a rules will be the same from any subset in two different
lookup tables.

D2BS and MC-SBC use similar effective bit concept to
cut a ruleset. By following the definition in D2BS, the time

Algorithm Time Complexity Space Complexity
D"BS O(p� . m· c(h)) 0((2·pt ·m)

MC-SBC O(pk . m(q + cxq ·1 . c(h))) O(q· (2· p)k. m)

Table 3: Complexity comparison between D2BS [28] and
MC-SBC where p is the average replication ratio, m is the
number of rules in a ruleset, h is the number of fields in a
rule, q is the number of effective bit sets, k is the number of
effective bits, and cx is the duplicated ratio between subsets
in two lookoup tables.

complexity to find a rule ID is O(pk ·m) . When more effective
bits are chosen, less rule IDs are stored in a subset. However,
the number of fields in a rule also impacts the time complexity
to generate the results of packet classification. Hence, the
time complexity of D2BS with full match process is expanded
as O(pk . m· c(h)), where c(h) depends on the implemented
matching algorithm and the number of field in a rule.

The time complexity of MC-SBC is the sum of the cost
to find candidate rules from different tables and the cost to
compare candidate rules with a packet. However, MC-SBC
allows multiple lookup tables to lower the complexity when
doing the full match. Hence, the time complexity of MC-SBC
is O(q·pk ·m+pk ·m·cxq-1·c(h)) = O(pk . m(q+cxQ-1 . c(h)))
where q . pk . m is the cost to find candidate rules from q
different tables with ordered sorting and q . pk . cxq-1 . c(h) is
the cost to match a packet with candidate rules.

6.1.2 Space Complexity

Both D2BS and MC-SBC store rule IDs in their data
structures as pointers to the full rule data. When the clas­
sification process is launched, the full rule data will be re­
trieved and compared with incoming packets. Hence, data
structures in D2BS and MC-SBC are not increasing propor­
tionally with the number of field in a ruleset. By following
the definition in D2BS, the space complexity of D2BS is
0 (2k ·l · m) = 0((2 · p)k . m) .

MC-SBC provides the f1exibility to trade space complexity
for time complexity. With the multiple lookup tables, MC­
SBC can checks only rule IDs to quickly filter out unrelated
rules to lower the number of rules for fun match. When
there are more lookup tables used in MC-SBC, the space
complexity of MS-SBC is increasing proportionally. Hence,
the space complexity of MC-SBC is O(q . (2· p)k . m) .

6.1.3 Complexity Comparison

The comparison between D2BS and MC-SBC is shown
as Table 3. MC-SBC provides the level of time and space
complexity as D2BS under the same setting. Moreover, MS­
SBC provides the f1exibility to lower the time complexity
at the cost of the increasing space complexity. The cost to
examine each packet for a match result is proportional to the
nu mb er of fields in a ruleset. For applications like OpenFlow
switch that needs more fields in a packet to be examined,
MC-SBC is able to support this application development
trend.

For example, the probability of 0, 1, and * (wildcard) of
for an fields in a random generated ruleset with lOOK rules
are (Fo, H, F.) = (0.45, 0.45, 0.1) . Assurne two sets of
effective bits are found and each set has 15 effective bits.
Hence, there are at most 0.00013 similar rules in average
from any subset in two different lookups. Hence, p is 0. 55

20

and / alpha is 0.00013 in this case. Assurne only linear search
is conducted and the cost to match each field is equal for
both D2BS and MC-SBC. With D2BS, the cost to find a
match result is: 0.5515 . 100000· 15 = 191 unit cost and the
storage requirement is: 0. 5515• 100000 . 215 = 417725 unit
space. With MC-SBC, the cost to find a match result is:
0.5515. 100000(2 +0.00013 ·15) = 26 unit cost and the storage
requirement is: 2 . 0.5515 . 100000 = 835450 unit space. By
doubling the space requirement, MC-SBC could decrease the
time complexity to about one seventh of the original value.

6.2 Experimental Results
In this section, MC-SBC is compared with other solu­

tions in terms of data structure and system performance.
The off-li ne rule programming stage in MC-SBC generates
lookup tables for the on-line packet classification stage. The
lookup tables are similar concepts with trees in decision­
based solutions. The subset of each lookup table is actually
the lead node in a decision tree. To show the efficiency of
those lookup tables, MC-SBC is compared to those exist­
ing decision-based solutions with three key parameters: tree
depth (Dt), replication ratio (f), and the maximum number
of rules stored on a leaf node (binth). The on-line packet
classification stage in MC-SBC affects the overall system
performance. To keep the f1exibility of implementation with
high system throughput, MC-SBC is implemented on a GPU
with different optimization strategies. Moreover, MC-SBC
is compared with other many-field packet classification solu­
tions on different platforms using the synthetic rulesets with
same setting.

6.2.1 Experiment Setup

All experiments are conducted on an Intel Xeon E5410
CPU machine with 4GB DDR2 RAM as the main mem­
ory. This machine is equipped a NVIDIA K20C GPU [14]
with 13 streaming multiprocessors (SMXs) and 5Gb GDDR5
memory for general computation. Each SMX has 192 single­
precision CU DA cores, 64 double-precision units, 32 special
function units, and 32 load/store units. Besides, MC-SBC
is implemented on the Debian 7.3 64-bit operating system
with Cuda 7.0 as the software development environment. All
necessary packets and tables are assumed to be ready on
GPU before the packet classification process starts. This is
a feasible and practical assumption because in the network
system there are an abundant number of packets buffered
to be processed in a network system [29] . In this paper, the
synthetic rulesets are generated by taking ClassBench ruleset
for the traditional 5-tuple first [26] . We attach 10 additional
fields with wildcard ratio as 0.1 and the unique values setting
as in [18] to those ClassBench rulesets to create the synthetic
rulesets for the experiments.

6.2.2 Off-line Rule Programming Results

The off-li ne rule programming stage determines the size of
each subset in a lookup table and impacts the overall system
performance. The characteristics of a ruleset and the select­
ing criteria both play key roles at this stage. Both ideal and
synthetic rulesets are verified to show the mixed interaction
between system setting and varying ruleset characteristics.

6.2.2.1 Results with ideal rulesets.
An ideal ru leset provides more effective bits compared to

practical rulesets and the distribution of rule IDs are evenly.

Wildcard
Binth Candidate Rules

of Ratio
SampIe Space - 1 SampIe Space - 2

Subsets (%)
Space size (bits) Space size bits)
5 10 15 5 10 15

0 156K 4K 108 4K 5 11

2 0.1 157K 4K 156 5K 6 1
1 164K 5K 178 6K 11 1
10 251K 12K 640 23K 280 4
0 39K 1K 27 1K 2 1

8 0.1 39K 1K 39 1K 2 1
1 41K 1K 45 1K 3 1
10 62K 3K 160 5K 70 1
0 9K 306 10 306 1 1

32 0.1 9K 310 10 315 1 1
1 lOK 355 12 405 1 1

10 15K 793 40 1K 18 1

Table 4: Binth and candidate rules for a ruleset with 10 M
rules by giving different subset and space size settings. All
fields in the ruleset varying with the field wildcard ratio for
each setting. Binth shows how many rule are stored in a leaf
node of a sam pIe space. Candidate rules are the intersection
results of any two sampIe spaces.

The analysis of ideal rulesets can show a trend to design a
MC-SBC system. The binth of a lookup table is affected
by bit position wildcard ratio, subset size, sampIe space
size, and the number of lookup tables. We evaluate field
wildcard ratio ranging from 0.01 % to 10%. The evaluation of
ideal ruleset is summarized as in Table 4. More subsets and
bigger sam pie space will decrease the number of rules stored
in each leaf node (binth) for higher system performance.
However, the wildcard ratio for each field in a ruleset increases
binth and results in longer processing latency and a higher
memory requirement. By changing these design factors, an
improved system could found with a trade-off between system
performance and memory requirement.

6.2.2.2 Results with synthetic rulesets.
The evaluation of MC-SBC with synthetic rulesets is con­

ducted to compare the data structure of MC-SBC with
other well-known algorithms like BC, SBC, Hi-Cuts, and
Hyper-Cuts to show the effectiveness of the proposed system.
MC-SBC is implemented with 3 major types of ClassBench
rulesets. The trade-off between binth and f helps a designer
to choose a setting which is suitable for the implementation
environment.

Figure 7a shows the maximum number of rules per leaf
node and Figure 7b shows the maximum replication ratio in
a sampling space with subsets. The number of rules per leaf
node (binth) decreases when the number of subsets increases.
Binth also increases when the number of rules in a ruleset
increases. The replication ratio increases when the number
of subsets increases. However, it does not increase when the
number of rules in the same ruleset increases. The proposed
method controls the replication ratio to achieve better scal­
ability in terms of storage, and provides the f1exibility to
trade the number of subsets for the number of rules stored
in a leaf node, at the cost of memory storage. Besides, the
binth of synthetic ruleset is bigger and does not decrease as
fast as the ideal ruleset. When more effective bits are chosen,

21

Threads-Block i n GPU

Figure 8: System throughput of GPU prototype implemen­
tation with varying GPU thread-block setting.

the dependence between effective bits becomes stronger and
it weakens the effectiveness of MC-SBC.

MC-SBC is compared with other decision-tree-based so­
lutions such as BC, SBC, HiCuts, and HyperCuts. Table 5
shows the comparison result with other algorithms. All al­
gorithms are set to have the same nu mb er of rules stored in
a leaf node (binth) to count accesses of tree traversal (Dt)
and the rule replication ratio (f) . The proposed method
(MC-SBC) is able to maintain the same level of binth and
replication ratio with lower and deterministic tree depth and
fast searching time.

6.2.3 On-fine Packet Classification Results

A GPU prototype is implemented to show the performance
of the proposed system with comparisons to the other many­
field packet classification solutions on different platforms.
Each packet is designed to have 15 fields in it and the size of a
packet header is 354 bits as defined in OpenFlow. The system
throughput is calculated based on the processing time of GPU
kernel by CUDA Visual Profiler. The time duration of the
GPU kernel is used as process latency for packet classification
process. We make an assumption that packet data could
be pre-Ioaded into GPU memory. This is a feasible and
practical assumption because in a network system there are
abundant packets in a network device waiting to be processed.
Therefore, we can pre-Ioad packet data to hide the transfer
latency. However, the up and coming memory architectures
may remove this bottleneck and aHow for the fuH performance
potential of MC-SBC. To avoid the performance penalty of
kernel synchronization, we implement only one kernel to run
both pre-filtering and fuH match with buffers to store packet
subset indices, packet sampIe values, and suspected packets.
Once the prefiltering process is done, the same kernel is going
to run full match process and report the match results for each
thread. Figure 8 shows the impact on system performance
with different GPU thread-block setting. MC-SBC is able
to rnitigate the variance between different types of rulesets
and generate consistent performance. Besides, MC-SBC is
also able to utilize the massive computation platform by
generating a higher system performance with more threads
and higher instructions level parallelism.

300 �---.----.-----r----r----,----,----,

250

200

.t::
"E 1 50 - - - - - - - - - - - '"
iIi

1 00

- - - - - - . _ -.- -
50

o
1 2 4

-

8 1 6

Subset

acl 1 5f-1 K --+­
acl 15f-1 0K - - -x- - ­

ael 15f- 1 00K - - - C<- -1w 1 5f-1 K {]
fw 15f-1 0K ----- -­

fw 15f- 1 00K - - - G - - -
fiic_1 5f-1 K - - .-­

ipc_1 5f-1 0K - 8 -
ipc_1 5f-1 00K -- - - .. - - -

32 64

(a) The number of rules in a leaf node (binth)

1 28

70

60

50
.2
ro Cl: 40
c
.2
ro .\1 30 Ci. Q) Cl:

20

1 0

0
1

acl 1 5f-1 K --+­
acl 15f- 1 0K - - -x- - ­

ael 15f- 1 00K - - - *- -1w 1 5f-1 K {]
fw 15f- 1 0K - . .. - .­

fw 15f- 1 00K - ' - G ' - '
fiic_1 5f-1 K - - . ­

ipc_1 5f- 1 0K - 8 -
ipc_1 5f-1 00K -- - - ... - -

2 4 8 1 6 32

Subset

(b) The replication ratio (f)

64 1 28

Figure 7: The experimental maximum number of rules per leaf node (binth) and the replication ratio (f) by dividing a ruleset
into 1 to 128 subsets with 15-bit sampie space for each subset

.l::5C I �.I::5C HiCuts I HyperCuts J\IlC-�.I::5C
Ruleset binth b-held ruleset l b-held ruleset

Ut t Ut t ut t ut t ut t
AGL_I K 0 5 \J 5 0 00 :w 17 5 :l 1:l

AGL_1oK 1u 5 41 5 :l5 oJ J4 14 J :l 10
ACL_100K 46 5 93 5 56 55 106 14 7 2 21l

FW_1 K 11 5 42 5 27 64 91l 22 3 2 12
FW_1o K 17 5 157 5 107 63 454 11l 122 2 29

F W_I UUK 54 6 70113 0 6:l37 115 151514 I II 1l:l5 :l 41l
It'G_1 K 5 5 1:l 4 10 7U 11 :l:l J :l 0

It'G_IUK 10 0 00 0 JJ 71:S :l7U 1\J :l7\J :l l U
It'G_1 UUK J\J 0 :ln 0 1u1 (0 (JI:S 11:S J5\J :l 10

Table 5: The comparison between different algorithms: Boundary Cutting(BC), Selective Boundary Cutting(SBC), HiCuts,
HyperCuts [12] , and Multidimensional-Cutting Via Selective Bit-Concatenation(MC-SBC)

Based on the observation of ClassBench rulesets, we can
find that a field normally has less than 10% as wildcards
for a ruleset. However, the wildcard ratio of a field does
impact the effectiveness to sampie a ruleset to construct
operational lookup tables. Hence, the system performance
and memory requirement for varying number of rules with
different wildcard setting is shown in Figure 9 to show the
feasibility of the proposed system. Normally, only few fields in
a ruleset are with high wildcard ratio compared to other fields.
MC-SBC can mitigate this problem by finding only effective
bits. In Figure 9, all field are set up with a high wildcard
ratio as the worst scenario and MC-CBS still maintains a
good scalability in term of wildcard ratio.

Figure 10 shows the comparison of system throughput
with other many-field packet classification algorithms such as
GPP-BV [18] and GPU-BV [19] . The processing latency is
about 4 ms in GPP-BV when processing 64 packets with 32 K
rules and is about 22 ms in GPU-BV when processing 81920
packets with 32 K rules. However, the processing latency
of this work is about 80 ms when processing 26624 packets
with 32 K rules. The proposed system is able to maintain
scalability with the increasing ruleset size and the growth
field number in a ruleset. Although FPGA solutions [5] [19]
are with a higher throughput (upto 650 MPPS), the FPGA
platform is constrained by its limited memory space and

22

(jJ 0..
0..
e.
=> Cl. .<:: Cl
:::> e .<:: f-

200
/,

300

1 90

//
280

1 80 260

1 70 - ' 240
. -

1 60

1 50

1 40

1 30

1 20

/

�
. / ./

�
- ' . - - '

. - . - [/ /
.
/ � / / '

�I , . -'

-�
. . ' � � � � �

220

200

1 80

1 60

1 40
o 0 . 0 5 0 . 1

Wildcard Ratio

0 . 1 5 0 . 2

ACL_1 k Throughput =
ACL_1 Ok Throughput ==

ACL_1 OOk Throughput ==

ACL_1 k Storage · · · · · ·u · · ·

AC L_1 Ok Storage _ -
ACL_1 00k Storage - ' - G ' - '

i!l
e.
E Q) E �
'::; 0-Q)
0::
c=-o E Q)
2

Figure 9: System throughput and memory requirement of
GPU prototype implementation for different 15-field rulesets
with varying wildcard setting.

GPU- BV =
GPP-BV ==

200 GPU-MCSBC =

Ci)
1 50 Cl.

Cl.
6
"5 Cl. .<:: 1 00 Cl :::J e .<:: f-

50

0

� �

I I� I I� I I � �
1 k 2k 4k 8k 1 6k 32k

Ru leset Size

Figure 10: The comparison between GPP-BV [18] , GPU­
BV [19] , and GPU-MCSBC(this paper).

can only support a ruleset with around 1 K 15-field rules
in it. Hence, the comparison with FPGA platforms is not
conducted here.

7. CONCLUSION AND DISCUSSION
In this paper, we present a many-field packet classifica­

tion algorithm by extracting only few candidate rules for
full match process to improve the system performance. The
proposed method converts a huge and biased rule space
into several small subsets by using key selecting metrics to
construct flat data structures for fast processing and easy
updating. Both data structures and matching processes in
the proposed system are designed for massive computation
platforms to hide short latency tasks behind a long access
latency task for a better system performance. The proposed
method is examined with ideal and synthetic rulesets with all
key factors related to system performance. Besides, the cut­
ting resuIts are compared with weil known cutting algorithms
to show the effectiveness. The throughput of GPU proto­
type achieves around 198 MPPS for lK 15-field rules and
around 163 MPPS for lOOK 15-field ruleset. The prototype
result is also compared with other many-field implementa­
tions in terms of scalability and throughput. This paper
demonstrates the feasibility of Openflow-based SDN switches
using software-based packet classification instead of TCAM
solutions.

8. ACKNOWLEDGMENTS
We want to thank Dr. Wei Wei from Beihang University

for his help on the mathematical problem formulation when
he was a visiting professor at Southern IIIinois University.

9. REFERENCES
[1] F. Baboescu and G. Varghese. Scalable packet

classification. volume 31, pages 199-210, 200l.
[2] H. Farhadi and A. Nakao. Rethinking flow c1assification

in sdn. In 2014 IEEE International Conference on
Cloud Engineering (IC2E), pages 598-603, 2014.

[3] P. Gupta and N. Mckeown. Classifying packets with
hierarchical intelligent cuttings. IEEE Micro,
20(1) :34-41, 2000.

23

[4] C. Hsieh and N. Weng. Scalable many-field packet
c1assification using multidimensional-cutting via
selective bit-concatenation. In Proceedings of the
Eleventh A CM/IEEE Symposium on Architectures for
networking and communications systems, pages
187-188, 2015.

[5] W. Jiang and V. K. Prasanna. Field-split parallel
architecture for high performance multi-match packet
c1assification using fpgas. In Proceedings of the
Twenty-jirst Annual Symposium on Parallelism in
Algorithms and Architectures, pages 188-196, 2009.

[6] W. Jiang and V. K. Prasanna. Scalable packet
classification on fpga. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems,
20(9):1668-1680, 2012.

[7] W. Jiang, V. K. Prasanna, and T. Ganegedara. A
scalable and modular architecture for high-performance
packet classification. IEEE Transactions on Parallel
and Distributed Systems, 25(5) :1135-1144, 2014.

[8] A. Kennedy and X. Wang. Ultra-high throughput
low-power packet classification. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems,
22(2):286-299, 2014.

[9] K. Kogan, S. Nikolenko, O. Rottenstreich, W. Culhane,
and P. Eugster. Sax-pac (scalable and expressive packet
classification) . In Proceedings of the 2014 A CM
Conference on SIGCOMM, pages 15-26, 2014.

[10] T. V. Lakshman and D. Stiliadis. High-speed
policy-based packet forwarding using efficient
multi-dimensional range matching. In Proceedings of
the A CM SIGCOMM 1 998 Conference, pages 203-214,
1998.

[11] H. Lim, N. Lee, G. Jin, J. Lee, Y. Choi, and C. Yim.
Boundary cutting for packet classification. IEEE/ A CM
Transactions on Networking, 22(2) :443-456, 2014.

[12] H. Lim, N. Lee, G. Jin, J. Lee, Y. Choi, and C. Yim.
Boundary cutting for packet classification. IEEE/ A CM
Transactions on Networking, 22(2) :443-456, 2014.

[13] Y. Ma and S. Banerjee. A smart pre-c1assifier to reduce
power consumption of tcams for multi-dimensional
packet classification. 42(4):335-346, 2012.

[14] Nvidia Corp. Nvidia K20 GP U Accelerator, 2012.
http://www.nvidia.com/content/PDF /kepler /Tesla­
K20ActiveBD06499001 v02.pdf.

[15] Open Networking Foundation. OpenFlow Switch
Specijication, Version 1 . 5. 1, 2015.
https://www.opennetworking.org/images/stories
/ downloads/ sdn-resources/ onf-specifications
/ openflow / openflow-switch-vl.5. l. pdf.

[16] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou,
J. Rajahalme, J. Gross, A. Wang, J. Stringer, P. Shelar,
K. Amidon, and M. Casado. The design and

implementation of open vswitch. In 1 2th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI 1 5), pages 117-130, 2015.

[17] Y. Qu, S. Zhou, and V. K. Prasanna. Scalable
many-field packet c1assification on multi-core
processors. In 2013 25th International Symposium on
Computer Architecture and High Performance
Computing (SBA C-PAD), pages 33-40, 2013.

[18] Y. Qu, S. Zhou, and V. K. Prasanna. A
decomposition-based approach for scalable many-field

packet classification on multi-core processors.
International Journal of Parallel Programming,
438(6) :965-987, 2014.

[19] Y. R. Qu, H. H. Zhang, S. Zhou, and V. K. Prasanna.
Optimizing many-field packet classification on fpga,
multi-core general purpose processor, and gpu. In
Proceedings of the Eleventh A CM/IEEE Symposium on
Architectures for Networking and Communications
Systems, pages 87-98, 2015.

[20] Y. R. Qu, S. Zhou, and V. K. Prasanna.
High-performance architecture for dynamically
updatable packet classification on fpga. In 2013
A CM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS),
pages 125-136, 2013.

[21] O. Rottenstreich, 1. Keslassy, A. Hassidim, H. Kaplan,
and E. Porat. On finding an optimal tcam encoding
scheme for packet classification. In 2013 Proceedings
IEEE INFOCOM, pages 2049-2057, 2013.

[22] A. Sanny, T. Ganegedara, and V. K. Prasanna. A
comparison of ruleset feature independent packet
classification engines on fpga. In IPDPS Workshops,
pages 124-133, 2013.

[23] S. Singh, F. Baboescu, G. Varghese, and J. Wang.
Packet classification using multidimensional cutting. In
Proceedings of the 2003 Conference on Applications,

24

Technologies, Architectures, and Protocols for Computer
Communications, pages 213-224, 2003.

[24] H. Song and J. S. Turner. Abc: Adaptive binary
cuttings for multidimensional packet classification.
IEEE/A CM Transactions on Networking, 21(1):98-109,
2013.

[25] V. Srinivasan, S. Suri, and G. Varghese. Packet
classification using tuple space search. A CM
SIGCOMM Computer Communication Review,
29(4):135-146, 1999.

[26] D. E. Taylor and J. S. Turner. Classbench: A packet
classification benchmark. IEEE/ A CM Transactions on
Networking, 15(3) .

[27] B. Vamanan and T. N. Vijaykumar. Treecam:
Decoupling updates and look ups in packet classification.
In Proceedings of the Seventh COnference on Emerging
Networking EXperiments and Technologies, pages 1-12,
2011.

[28] B. Yang, J. Fong, W. Jiang, Y. Xue, and J. Li.
Practical multituple packet classification using dynamic
discrete bit selection. IEEE Transactions on
Computers, 63(2):424-434, 2014.

[29] S. Zhou, S. Singapura, and V. Prasanna.
High-performance packet classification on gpu. In 2014
IEEE High Performance Extreme Computing
Conference (HPEC), pages 1-6, 2014.

