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Packet classification is a core problem for OpenFlow-based 
software-defined networking switches, which required 38 
packet header fields per flow to be examined against thou­
sands of rules in a ruleset. With the trend of continue 
growing number of fields in a rule and the number of rules 
in rule set, it will be a great challenge to design a high 
performance packet classification solution with the capabil­
ity to easy update new rule and fields. In this paper, we 
present a scalable many-field packet classification algorithm 
with varying rulesets and its prototype implementation on a 
graphics processing unit. The proposed algorithm constructs 
multiple lookup tables and merges partial lookup results for 
a small ruleset to accelerate the overall packet classification 
process by using effective bit positions in a ruleset with three 
selecting metrics: wildcard ratio, independence index, and 
diversity index. Those lookup tables made with effective bit 
positions are flat with a low rule replication ratio. Besides, 
they are adjustable to meet different implementation environ­
ments for a good performance scalability between different 
ruleset sizes. Our prototype on a single NVIDIA K20C GPU 
achieves 198 MPPS, 186 MPPS, 163 MPPS throughput for 
lK, 32 K, and lOOK 15-field ruleset. 
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1. INTRODUCTION 
Software-defined networking (SDN) abstracts network in­

frastructures as programmable resources for network applica­
tions. OpenFlow-based software-defined networking switches 
[15] require 38 packet header match fields and 6 pipeline 
match fields to be examined for a flow. The requirements on 
latency, throughput, update cost, and storage for a system 
like OpenFlow Switch become stricter with the increasing 
complexity of a ruleset. Hence, packet classification remains 
an open and challenging problem for next generation network 
device development. 
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Current solutions generate good system performance for 
traditional 5-tuple packet classification problems [21] [9] [3] [10] 
[1] but they do not scale weil to many-field packet classifica­
tion problems. Longer processing latency and bigger space 
requirement caused by additional fields in a ruleset are ex­
pected. Many-field packet classifications with current 5-tuple 
TCAM solutions are with high implement at ion cost due to 
the bigger size of each rule and arbitrary field types in a 
many-field ruleset. Many-field implementations with current 
5-tuple decision-tree-based solutions will generate a deeper 
and wider tree due to those additional fields and result in 
impractical memory usage and inefficient tree traversal to 
reach leaf nodes. Moreover, many-field implementations with 
current 5-tuple decomposition-based solutions will increase 
both process latency and storage requirement due to the 
merge process for those those additional fields. 

Several research groups observed these new challenges in 
many-field packet classification and tried to come up with dif­
ferent solutions. On the one hand, some solutions avoid the 
repeated packet classifications on the same packet at different 
network nodes and free extra processing capacity. For exam­
pie, tagging approach [2] classifies packets at the edge switch 
and inserts tags into packets for a fast packet forwarding in a 
network. Moreover, hashing approach [16] classifies the first 
packet in a flow and uses hash table lookups for the following 
packets to improve the performance of packet forwarding. 
On the other hand, some solutions improve the packet classi­
fication performance directly by designing new methods. For 
example, decomposition-based approach [19] uses bit vector 
with hash tables, decision-tree-based approach [6] uses 2-d 
pipeline architecture with tree-to-pipeline mapping scheme, 
and hybrid-based approach [4] uses effective bits with look-up 
tables to lower the computation cost and improve the system 
performance. 

In this paper, we propose a scalable many-field packet 
classification algorithm using multidimensional-cutting via 
selective bit-concatenation (MC-SBC) for OpenFlow-based 
SDN switches. MC-SBC uses simple lookup tables to avoid 
computation divergence problems and leverages the high 
efficient instructions in a massive computation platform for 
a higher system throughput. Due to the sparsity and biased 
rule distribution in a ruleset, MC-SBC is designed to quickly 
find out few candidate rules using effective bits for the full 
match as shown in Figure 1. In summary, there are three 
main contributions of this work: 

• MC-SBC demonstrates scalability on both the system 
performance and rule replication ratio with varying 
ruleset types and sizes. 
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Figure 1: The proposed packet classification architecture. 
The system consists of off-line rule programming and on-line 
packet classification. Rule programming is conducted for the 
first time when a system is initiated or its ruleset is updated. 

• MC-SBC designs a two-stage architecture with fea­
sibility and flexibility with easy implementations by 
leveraging effective bit positions in a ruleset. 

• A GPU prototype is implemented with packet classifi­
cation throughput of 198 MPPS and 163 MPPS for 1 K  
and lOOK 15-field rules. 

The remainder of this work is organized as folIows. Sec­
tion 2 gives background for related research es on packet clas­
sification problems and discusses the motivation of this paper. 
Section 3 presents the proposed architecture. Section 4 dis­
cusses the selecting metrics of effective bits. Section 5 gives 
an example of algorithm operations. Section 6 discusses 
the complexity analysis and shows the experiment results. 
Finally, the paper is concluded in Section 7. 

2. BACKGROUND 
In this section, we review major types of the packet clas­

sification algorithms to show the challenges and the trend 
of packet classification research area. Then we present the 
motivations for new many-field packet classification solutions. 

2.1 Ternary Content-Addressable Memory So­
lutions 

Ternary content-addressable memory (TC AM) is a special­
ized memory that can store and query three different types 
of data: 0, 1, and * (wildcard).  TCAM solutions (TCAMs) 
employ multiple TC AM devices for each rule in a ruleset, 
and construct a parallel matching architecture for the target 
packet header fields with those pre-defined rules to fulfill 
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the line rate requirement. However, for a ruleset with more 
packet header fields and bigger rule size, TCAMs need more 
TCAM devices and a complicated hardware implementation. 
Though TCAMs [9] [13] leverage hardware parallel computa­
tion power to generate high packet classification throughput, 
they suffer problems such as high power consumption, high 
manufacturing cost, and low scalability [21] [27] . 

2.2 Thple Space Solutions 
Besides of the hardware-based implement at ion like TCAMs, 

many researchers [16] [25] also work on the software-based 
algorithmic solutions for a better system scalability with 
a lower implement at ion cost. Tuple space solutions are 
software-based and they leverage the fact that the num­
ber of distinct tuples is much less than that of rules in a 
ruleset. A tuple defines the number of significant bits in a 
prefix match field, the nesting level and range ID of a range 
field, and the existence of a value for an exact match field in 
a ruleset. Tuple-space-based solutions efficiently compress a 
ruleset by storing those valid bits of each field only. Besides, 
tuple-space-based solutions perform the search of each tuple 
independently and take advantage of parallelism. With the 
growth field number in a ruleset, both tuple number and 
tuple size increase. A longer processing latency could be 
expected. 

2.3 Decomposition-based Solutions 
Decomposition-based solutions [7] [22] [28] work on each 

field in a ruleset independently and merge the intermediate 
results from different fields as the final match result. Since 
each field is processed individually, more intermediate results 
will be generated with the growth of field number in a ruleset. 
The increasing merge stages of those additional fields in a 
ruleset result in a bigger memory requirement and longer pro­
cessing latency. Recently, many-field decomposition-based 
solutions [18] [17] leverage range-tree and hash functions to 
process the 15-field packet classification. 

2.4 Decision-tree-based Solutions 
Decision-tree-based approaches [8] [11] [24] [28] analyze all 

fields in a ruleset to construct decision trees for efficient 
packet header lookup. For the matching process, decision­
tree-based solutions traverse the tree by using individual field 
values to make branching decisions at each node until a leaf 
is reached. Tree depth and rule duplication in a decision tree 
affect the searching efficiency and memory requirement of 
one implementation. Both of them increase with the growth 
of field numbers which results in an exponential increase 
of memory requirement and increasing processing latency. 
Recently, many-field decision-tree-based solution [6] divides 
a ruleset into several subsets which have their own individual 
optimized decision trees and implement the design as a pipe­
line architecture on FPGA for good performance on a 12-
field ruleset. An improved algorithm [20] leverages similar 
techniques and designs fine grained processing elements with 
a 2-dimensional pipelined architecture on FPGA with better 
performance for a 15-field ruleset. 

2.5 Motivation of Many-field Packet Classifi­
cation Solutions 

New applications like OpenFlow Switch examine more than 
15 fields in multiple lookup tables to categorize incoming 
packets into different flows [16] . For the development of 



Kules Fjeld 1 Fjeld � Fjeld :3 
rl UUlU 11U1 lUU1 
r2 1001 000'" 100'" 
r3 lUlU UllU lllU 
r4 1110 1010 10"'''' 
r5 0000 "'''''''''' 0000 
r6 ",,,,,,"t< 110'" 101'" 
r7 lUu1 1ulU UUUU 
rs 1111 110* 0000 
rg 0101 1010 101'" 
rlO """"" 0110 101" 
rll UUU1 U11U UUUU 
rl2 0010 110'" 101" 
rl3 0100 000'" 1110 
r14 1100 0010 000 
rl5 1110 000 0000 
rl6 0011 110'" 101'" 

Table 1: An example ruleset of sixteen rules with three fields 

advanced network services such as SDN and NFV, the number 
of packet header fields in a rule are expected to grow in the 
future. However, the growing field number in a ruleset poses 
new challenges to packet classif'ication problems in term of 
system throughput and storage requirement. To address the 
scalability problem and improve the system performance of 
many-field packet classification problem, it is necessary to 
lower the computation complexity with the number of rules 
and fields in a ruleset. In this paper, MS-SBC leverages the 
statistical characteristics between different bits in a ru leset to 
pre-compute lookup tables to lower computation complexity 
with the growth of field number and ru leset size. 

The performance of a network application is affected by 
not only the implemented algorithm but also by the host 
platform. Heterogeneous system architecture is proposed 
to generate high system throughput with low implementa­
tion cost and high flexibility. However, it is a challenge 
to align different computation resources in a heterogeneous 
system. GPU is a typical commercial off-the-shelf device. 
Compared to other platforms such as Mulitcore General Pro­
cessor (GPP) or FPGA, GPU supports fewer instruction but 
has more computation units to run in parallel. Besides, using 
GPU to implement an algorithm is a purely software-based 
solution and the implement at ion does not change GPU's 
hardware characteristics. Hence, GPU platforms provide 
a high flexibility on how to implement an algorithm and a 
high port ability to move the designed algorithm to another 
GPU with similar architecture. With a proper alignment 
between the algorithm and GPU, a GPU can generate high 
throughput. All these benefits make GPU attractive for 
packet classification problems. 

3. MC-SBC ARCHITECTURE 
Packet classification multidimensional-cutting via selective 

bit-concatenation (MC-SBC) is implemented as a two-stage 
classification system with an off-line rule programming pro­
cess to construct the lookup tables for the foUowing on-line 
packet classification process as shown in Figure 1. This two­
stage system shifts the computation cost to off-line stage 
to generate lookup tables to be used later to increase the 
system performance at on-line stage by doing simple lookups 
instead of data extracting and composition. 

15 

Algorithm 1: The pseudo code of off-line rule pro­
gramming process. 

input : A many-field ruleset, R 
output: Effective Bit Sets, EES 

1 for All bits in a ruleset do 

2 

3 

4 

// Get wildcard ratio 
Ri Rj Get p •• 

' ; 
// Get diversity index 
Get DivRi . 

, 

// Get indepedence index 
Get IndRi,Ri . 

, 

// Generate selection factor 
5 SFRi,Rj 

= a ·  p.R"i,Rj + ß · DivRi + 'Y' IndRi,Rj; 
6 end 
7 Mark all bits as unused; 
8 while Unused bits are available do 
9 for All unused bits in a ruleset do 

10 if SFRi,Rj is maximum then 
11 if p.r;i ,Rj > Pth and DivRi > Divth 

IndRi,Rj > Indth then 

I AppendR\Rj to current EBS; 
Mark R', RJ as used; 

end 

12 
13 
14 
15 
16 

end 
end 

17 Move to next EBS; 
18 end 

3.1 Off-line Rule Programming 

and 

Off-line rule programming stage shifts the computation 
cost of field traversals in many-field packet classification 
using the pre-computed lookup tables. It stores the partition 
results of a ruleset into these lookup tables with rules' ID and 
uses effective bits as indices to access them. These effective 
bits are selected to provide the best discrimination between 
rules in a ruleset. Since only few effective bits are used, 
those bits could be quickly collected from a packet header. 
A lookup generates preliminary packet classification results 
without fuH comparison between rules and packets. 

MC-SBC leverages wildcard ratios, independence indices, 
and diversity indices to identify effective bit positions in a 
ruleset and uses these bits to generate lookup tables. MC­
SBC makes one lookup table by using one set of the effective 
bit positions of each rule. To save the required memory space 
and improve the processing latency, MC-SBC constructs 
multiple lookup tables with high independence to each other. 
The intermediate lookup results from each table are merged 
to become a much smaHer candidate rule subset for the fuU 
match process in on-line packet classification stage. 

To update lookup tables with low cost, each lookup table 
is stored discretely in system memory with two reference 
tables: the quantity table and the address table. The address 
table teUs the memory address of each location in a lookup 
table. The quantity table teils the number of rule IDs in 
that location. Once there is an update in a ruleset, only 
those affected locations are updated. For example, if we want 
to add a new rule into a ruleset. By using the pre-defined 
effective bit position set, we can find the affected locations for 
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header field's value to make branch decisions at each node 
until a leaf node is reached. MC-SBC saves the time to access 
each field 's value with the concatenation value of those 
effective bits to make branch decision. Instead of conducting 
at most two separate lookups on the data structure used in 
HyperCuts to reach a leaf node, MC-SBC only needs one 
lookup on its data structure. 

r6 3.2 On-line Packet Classification 

rs 

(a) HyperCuts 

I RUI�set, I 
+ 

Effective Bits: 
Fieldl Bit3 
Field2 Bit2 
Field3 Bit2 

I 

(b) MC-SBC 

Figure 2: The examples of (a) HyperCuts and (b) MC-SBC 
data structures for a ruleset as in Table 1. Both algorithms 
are set up to have at most 3 rules in a leaf node with minimum 
rule duplication ratio. 

this new rule. The address table teils where to find the data 
of rule IDs in memory and the quantity table teils how many 
rule IDs are stored there. MC-SBC modifies rule ID data at 
this location without interference to others then updates the 
quantity table. 

The pseudo-code of rule programming process is shown 
in Algorithm 1 where R is the target ruleset, Ri is the bit 
value of i-th bit, SFi,j is the selection factor for i-th and 

j-th bits in a ruleset. p.R"i ,Rj is the wildcard ratio of i-th and 
j-th bit in a ruleset and the threshold is Pth . DivRi 

is the 
diversity index of i-th bit in a ruleset and the threshold is 
Divth . IndRi,Rj is the independence index of i-th and j-th 
bits in a ruleset and the threshold is I ndth . 

An example of the data structures between HyperCuts [23] 
and MC-SBC with a ruleset in Table 1 is shown in Figure 2. 
HyperCuts finds the best way to cut a ruleset heuristically 
with a bigger processing latency be fore constructing its data 
structure. MC-SBC detects those effective bits by using 
the statistical characteristics in a ruleset deterministically 
and creates its data structure directly. Besides, more leaf 
nodes could be found in this example for HyperCuts' data 
structure resulting in insufficient memory usage. Moreover, 
when verifying an incoming packet, HyperCuts checks each 
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The on-line packet classification contains two processes: 
the pre-filtering process and the fuH match process. The 
pseudo code of on-line packet classification is shown in Al­
gorithm 2 where r is the target rule and pkt is an incoming 
packet. The pre-filtering process is designed to find the re­
lated rule IDs for an incoming packet. It takes the values 
of effective bit position in a packet as lookup table indices 
and checks with pre-computed lookup tables for prelimi­
nary results. To accelerate the merging process, rule IDs 
in lookup tables are stored in order. Lookup results from 
different tables are merged to come out candidate rule IDs. 
All candidate rule IDs are then forwarded to the full match 
stage. 

The full match process is designed to report matches be­
tween packets and candidate rules. It checks candidate rule 
IDs and retrieves both packet data and rule data in fuH. 
Then full match process compares them based on each field's 
characteristics, such as pre-fix match, range match, and exact 
match. During the matching process, if the match within a 
field fails, the full match process will move to next candidate 
rule immediately. Once there is a match with the highest 
priority rule, it terminates the matching process and reports 
this match. If there is no match, the fuH match process 
conducts the default action. 

Algorithm 2: The pseudo code of on-line packet 
classification process 

input : A many-field ruleset, Effective bit position 
sets, Sam pIe space lookup tables 

output: Match results 

// Get packet's sampie value 
1 for All packet in queue do 
2 Get packet sampie value; 

// Find sampie space lookups 
3 Get the location of each space space based on 

sam pIe value; 
// Find common rule ID 

4 for All Rule ID in each lookup do 
5 I Get common rule from different lookups; 
6 end 

// Conduct full match 
7 Retrive packet data; 
8 for All candidate rules do 
9 Retrice rule data; 

10 if pkt = ri then 
11 I Report match; 
12 end 
13 end 
14 end 



4. SELECTING METRICS FOR EFFECTIVE 

BIT POSITION 
Effective bits are those bits in a ru leset which partition the 

ruleset evenly at best effort. At the off-li ne rule programming 
stage, MC-SBC uses effective bits to cut a ruleset effectively 
into subsets and generate lookup tables as the cutting results. 
At the on-line packet classification stage, MC-SBC uses the 
values of effective bits of a packet to find candidate rules 
for the full match process. Hence, the aim of MC-SBC 
is to make the subsets' sizes as small as possible and to 
distinguish different rules in an efficient way. Therefore, for a 
set of effective bit positions, any two of them are designed to 
be with low wildcard ratio (P;�,j ») and high diversity (Div) 
to lower the total number of duplicated rules. Besides, the 
independence index (Ind) between any two bits is designed 
to avoid possible bias of data structure. To find out effective 
bits, MC-SBC leverages several key statistic characteristics 
in a many-field ruleset as discussed in the following sections. 

4.1 Wildcard Ratio 
Wildcard ratio measures how many wildcard symbols (* ) 

appear on two chosen bit positions in a ruleset. A wildcard 
( * ) symbol in a bit position means it could be either 0 or 
1. When an effective bit position encounters a wildcard 
symbol in a specific rule due to the prefix and range fields, 
this wildcard symbol has to be converted into 0 and 1 to 
cover all possible matches and causes rule duplication. The 
duplication of a rule increases sharply when some rules have 
many wildcard symbols on those effective bits. For example, 
a rule has its sampie value as 01 ** ,  and the rule ID of this 
rule will be duplicated to subsets 0100, 0101, 0110, and 0111 
in a sampie space. A higher wildcard ratio for a bit position 
means there are many wildcard symbols on this bit position 
and more duplications are produced. Therefore, more rules 
will be duplicated and distributed to different subsets in 
a lookup table, and it results in a higher replication ratio, 
bigger averaged number of rules in a subset, and longer 
processing latency. 

MC-SBC chooses those bit positions with a lower wildcard 
ratio when other parameters are the same, and examines 
wildcard symbols for any two chosen bit positions in a ruleset 
to avoid the impacts caused by wildcard ratio. MC-SBC uses 
Equation 1 to estimate the combined wildcard ratio for any 
two chosen bit positions where N is the number of rules in a 
ruleset, i and j are for bit positions in a ruleset: 

NCi,j) 
PCi,j ) __ *_* _ ** - N . (1) 

4.2 Independence Index 
Bit positions with low correlations to each other can draw 

good distinctions between different rules when checking sam­
pie values, and independence index ensures that different bit 
positions are with high independence to each other. MC-SBC 
chooses a set of effective bit positions to guarantee the high 
independence among them. MC-SBC determines the inde­
pendence index by the calculation for any two bit positions 
by the following Equation 2: 

Ind(i,j) 
= L (2) 

x=ü,l,* y=O,l,* 
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4.3 Diversity Index 
Diversity index ensures the distribution of rule number 

in the subsets is even for better performance and lower 
processing latency. The diversity index of a bit position is 
calculated by calculating the entropy of the distribution on 
o and 1 as Equation 3: 

. i Po Po PI I PI Dw = 
- 1 _ P; 

log 1 _ PJ - 1 _ PJ og 1 - PJ . 
(3) 

With a high diversity index, the subset sizes are distributed 
more evenly, and if the subset sizes are with uniform distri­
bution, the processing latency under the worst case can be 
greatly reduced for a given duplication. 

The above indices can be generalized to the cases of many 
bit positions (even two sets of bit positions) ,  and the cor­
responding definition can be derived in a similar way. The 
proposed algorithm becomes more accurate when more bit 
positions are evolved. However, more computational cost will 
arise. Thus, we use these indices of one or two bit positions 
to reduce the computational complexity and the general cases 
for them are neglected here. Examples of how to implement 
MC-SBC are discussed in the next section. 

5. EXAMPLES OF MC-SBC IMPLEMENTA­

TION 
Examples of MS-SBC algorithm are given in this section 

to show how MC-SBC works as a two-stage system for many­
field packet classification. In the off-line rule programming 
stage, an example is given to illustrate how MC-SBC detects 
effective bits from a ruleset, uses those bits to create lookup 
tables, and updates those tables when a ruleset changes. In 
the on-line packet classification stage, an example is given to 
illustrate how the prefiltering process uses a packet he ader 
data with those pre-computed lookup tables and extracts 
candidate rules by merging intermediate results from table 
lookups. 

5.1 Effective Bits Selection 
MC-SBC uses only few effective bits in a ruleset to con­

struct lookup tables to accelerate the overall processing speed. 
Since only those effective bits in the ruleset are used, MC­
SBC converts range match fields to prefix match fields with 
an expanded value to avoid rule explosion problem but still 
keeps the characteristics of each field for the packet clas­
sification. For an effective bit position set, MC-SBC finds 
any two bit positions where Div is big, Ind is smalI, and 
P** is small. Here, RCi,j) is denoted as the bit position j in 
field i of a ruleset R. For the ruleset as in Table 1, RCl,l), 
RCl,2), R(1,3), RCl,4), R(2,1), RC2,2), RC2,3), R(3,1), and R(3,3) 
are with higher Div indices compared to other bits for an 
effective bit position set. However, if R(l,l), RCl,2), R(1,3), 
RCl,4) or R(2,1), R(2,2), RC2,3) are in the same set, a higher 
P** index of that set is found and it results in a higher rule 
duplication. Hence, there are at most two sets with up to 3 
elements in each set: {RCl,l) V R(1,2) V R(1,3) V R(1,4), RC2,1) V 
RC2,2) V RC2,3), R(3,3) V R(3,4)} or at most 24 sets with up to 
2 elements in each set. To decide the of the elements in a 
set, Ind indices are used and {RC2,3), R(3,3)}, {RCl,l), R(2,1)}, 
and {R(1,4), R(3,1)} are found as effective bit position sets 
which have smaller Ind values. Thus those effective bit po­
sition sets are good to divide a ruleset into smaller groups 



and construct lookup tables for each group by using other 
effective bit position sets. 

The effective bit position sets decide the size of a lookup 
table, the number of groups for a ruleset, and how many 
lookup tables can be generated for a ruleset. We take the 
same matric as mentioned in Section 4 for differnt types of 
ClassBench rulesets. Table 2 shows the number of effective 
bits we can find after the rule programming on 5-tuple Class­
Bench rulesets. The available number of effective bits varies 
from one ruleset to another but there are sufficient bits from 
most fields. With this observation, a many-field synthetic 
ruleset with sufficient bit position sets is assumed to generate 
lookup tables with low dependence to each other. 

Table 2: The experimental average number of effective bits 
from the traditional 5 tuples for different rulesets 

Group 1, Group 2, Group n, 

G1 G2 Gn 

5ample 5ample 5ample 
5pace 1, e 5pace 1, 5pace 1, e 

551 pie 551 551 pie 

Figure 3: An example of the relations hip between ruleset, 
groups, and sam pIe spaces. A ruleset is divided into several 
small group. Each subset creates its own sam pie spaces. 

5.2 Lookup tables construction 
To improve system seal ability and performance, MC-SBC 

divides a ruleset into sm aller groups with minimum overlaps 
to each other and constructs lookup tables for each group 
separately. MC-SBC collects the target rules by putting 
rules with same attributes into a smaller subset and gives 
each subset a group index. Later, when doing a lookup, 
MC-SBC can only check those rules with same attributes 
by using group indices without wasting resources on those 
unrelated rules. For a big ruleset size, MC-SBC can generate 
more groups to maintain system seal ability and performance. 
When the groups of a ruleset are ready, MC-SBC creates 
lookup tables for each group to maintain the system perfor­
mance and memory requirements. The relationship among a 
ruleset, groups, and lookup tables is shown in Figure 3. 

An example of the lookup table construction process is 
shown in Figure 5 for a ruleset as in Table 1. From Sec­
tion 5.1, multiple effective bit position sets could be found 
from the example ruleset and there are three sets with the 
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Field 1 bitO bin bit2 biß 

Ruleset, R 
rule rl 

I 0 I 0 I 0 I 0 I L-...J....---'-,...L.--' L-...l...---'-T-'---' 

Field 1 bitO bitl bit2 

Figure 4: An example of the rule programming process on 
subset construction. In this example, we use the effective set: 
{R(2,3) , R(3,3)} to generate the group indices. The ruleset is 
divided into several groups based the group indices. 

best ruleset discrimination: {R(2,3), R(3,3)}, {R(I,I), R(2,1)}, 
and {R(I,4),R(3,1)}. The first set is used to generate the 
group index and the following two sets are used to con­
struct lookup tables. For example, the concatenation value 
of {R(2,3) and R(3,3)} in rule rI6 is 01 and it acts as a 
group index as shown in Figure 4. Set {R(I,I),R(2,1)} and 
{R(I,4), R(3,1)} are used for lookup tables. In the group 00, 
there are 5 rules in it: rl, r2, r5, rs, and r15 and the lookup 
tables are shown in Figure 5. 

When a ruleset is updated, only those related groups and 
lookup tables are updated and the following part remains 
unchanged. To update these lookup tables, MC-SBC finds 
which groups the target rule belongs to originally and re­
moves the target rule from all related locations in the sam pie 
spaces. For example, to update rI5: [1110, 000*, 0000] as 

r:5:[1110,000*,1111], rI5 belongs to group 00 but now r�5 be­
longs to group 01. Hence, rI5 has to be removed from lookup 
tables of group 00 and r�5 has to be inserted into group 01. 
Instead of checking all group 00 sampie spaces, rI5 is stored 
in location 10 of the first lookup table and in location 11 
of the second table of group 00 by its original sampie val­
ues. Hence, MC-SBC checks the address table to find where 
to modify in the memory space, and updates the quantity 
table with the updated number of rules in both locations. 
Then MC-SBC inserts r�5 into in group 01 lookup tables and 
updates the associated reference tables accordingly. 

5.3 Pre-filtering 
The pre-filtering process merges the lookup results from 

each sampie space to extract candidate rules for the full match 
process. It takes the group index and the sampie values of 
an incoming packet to find out which group's lookup tables 
should be used to retrieve rule IDs in a target location. The 
pre-filtering process then extracts candidate rules from the 
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Figure 5: An ex am pIe of rule programming process on lookup 
table construction for group 00 with 1'1,1'2,1'5, 1'8 and 1'15 in 
it. The concatenation of bit values is used to lookup the 
different locations in a sampIe space for the rule IDs. Rule 
IDs with same sampIe values are kept in the same location. 

lookup results of different sampIe spaces for the following 
full match process. 

For example, to verify an incoming packet py as shown in 
Figure 6, MC-SBC takes the group index and table indices 
from Py, and uses them to check the lookup tables for rule 
IDs. Hence, py has 00 as its group index, 10 and 00 as 
the table indices for lookup tables. Thus, MC-SBC gets 1'2, 
1'15 from location 10 of first lookup table and 1'5,1'15 from 
location DOof second lookup table in group 00. By merging 
the lookup results, the pre-filtering process generates 1'15 
as the candidate rule ID and passes it to the following full 
match process. 

5.4 Full match 
To accelerate the matching process, the pre-filtering pro­

cess uses only the rule ID to find out the candidate rules for 
the full match process for each incoming packet. However, 
a lookup only shows the match result on those effective bit 
positions between a rule and the incoming packet. To guar­
antee a match between packets and rules, a full comparison 
between each header field of a packet and the candidate 
rules is necessary. The full match process retrieves those 
candidate rules' data and packet data in full for the matching 
process and reports the matching results. With only few 
rules, we are able to implement those efficient match algo­
rithms and derive the match results quickly at the full match 
stage. Other solutions can be implemented at this stage for 
a faster matching process without the restrictions caused by 
the complexity on a ruleset. To demonstrate comparable 
results with other algorithmic solutions, we only conduct the 
linear search at the full match process. 

6. RESULTS 
In this section, the theoretical results of time and space 

complexity are given to demonstrate how MC-SBC reduces 
the complexity by using multiple lookup tables. Then the 
experimental results are given to show the feasibility and 
effectiveness of the proposed MS-SBC algorithm with the 
comparison along with other existing many-field packet clas­
sification solutions. 
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Figure 6: An example of the pre-filtering process for packet 
py. The subset index and sampIe values of packet py are 
generated with effective bit position sets used for sam pIe 
space construction. The group index is used to decide which 
group's sam pIe spaces should be used for the look-ups. The 
packet's sam pIe values are used for lookups in different sampIe 
spaces. The intersection process in pre-filtering derives the 
candidate rules and pass them to the following full match 
process. 

6.1 Theoretical Results 
In this section, the time and space complexity are given for 

both D2BS [28] and MC-SBC at first to show how MC-SBC 
can lower the complexity by using multiple lookup tables. 
Then a example with practical setting is given to show the 
performance of MC-SBC. 

6.1.1 Time Complexity 

Assume there are m rules in a ruleset, R, and each rule has 
h fields in it. For this ruleset, there are up to q effective bit 
position sets and each set has up to k bits in it. When using 
one set of effective bit position to partition R, R could be 
divided into at most 2k subset. Due to wildcard symbol in 
the ruleset, one rule could appear in multiple subsets. Hence, 
the replication ratio caused by each effective bit is p and each 
subset could have up to pk . m rules. When the partition 
result is stored as a lookup table and uses the concatenation 
values of those effective bits as indexes for the table, there 
are up to q lookup tables for this ruleset and only rule's ID is 
stored in the lookup table. Based on the selecting metric of 
effective bits, the rule distribution between different lookup 
tables is designed to be different. Hence, there are up to 
a rules will be the same from any subset in two different 
lookup tables. 

D2BS and MC-SBC use similar effective bit concept to 
cut a ruleset. By following the definition in D2BS, the time 



Algorithm Time Complexity Space Complexity 
D"BS O(p� . m· c(h)) 0((2·pt ·m) 

MC-SBC O(pk . m(q + cxq ·1 . c(h))) O(q· (2· p)k. m) 

Table 3: Complexity comparison between D2BS [28] and 
MC-SBC where p is the average replication ratio, m is the 
number of rules in a ruleset, h is the number of fields in a 
rule, q is the number of effective bit sets, k is the number of 
effective bits, and cx is the duplicated ratio between subsets 
in two lookoup tables. 

complexity to find a rule ID is O(pk ·m) . When more effective 
bits are chosen, less rule IDs are stored in a subset. However, 
the number of fields in a rule also impacts the time complexity 
to generate the results of packet classification. Hence, the 
time complexity of D2BS with full match process is expanded 
as O(pk . m· c(h)), where c(h) depends on the implemented 
matching algorithm and the number of field in a rule. 

The time complexity of MC-SBC is the sum of the cost 
to find candidate rules from different tables and the cost to 
compare candidate rules with a packet. However, MC-SBC 
allows multiple lookup tables to lower the complexity when 
doing the full match. Hence, the time complexity of MC-SBC 
is O(q·pk ·m+pk ·m·cxq-1·c(h) )  = O(pk . m(q+cxQ-1 . c(h))) 
where q . pk . m is the cost to find candidate rules from q 
different tables with ordered sorting and q . pk . cxq-1 . c(h) is 
the cost to match a packet with candidate rules. 

6.1.2 Space Complexity 

Both D2BS and MC-SBC store rule IDs in their data 
structures as pointers to the full rule data. When the clas­
sification process is launched, the full rule data will be re­
trieved and compared with incoming packets. Hence, data 
structures in D2BS and MC-SBC are not increasing propor­
tionally with the number of field in a ruleset. By following 
the definition in D2BS, the space complexity of D2BS is 
0 (2k ·l · m) = 0((2 · p)k . m) . 

MC-SBC provides the f1exibility to trade space complexity 
for time complexity. With the multiple lookup tables, MC­
SBC can checks only rule IDs to quickly filter out unrelated 
rules to lower the number of rules for fun match. When 
there are more lookup tables used in MC-SBC, the space 
complexity of MS-SBC is increasing proportionally. Hence, 
the space complexity of MC-SBC is O(q . (2· p)k . m) . 

6.1.3 Complexity Comparison 

The comparison between D2BS and MC-SBC is shown 
as Table 3. MC-SBC provides the level of time and space 
complexity as D2BS under the same setting. Moreover, MS­
SBC provides the f1exibility to lower the time complexity 
at the cost of the increasing space complexity. The cost to 
examine each packet for a match result is proportional to the 
nu mb er of fields in a ruleset. For applications like OpenFlow 
switch that needs more fields in a packet to be examined, 
MC-SBC is able to support this application development 
trend. 

For example, the probability of 0, 1, and * (wildcard) of 
for an fields in a random generated ruleset with lOOK rules 
are (Fo, H, F.) = (0.45, 0.45, 0.1) . Assurne two sets of 
effective bits are found and each set has 15 effective bits. 
Hence, there are at most 0.00013 similar rules in average 
from any subset in two different lookups. Hence, p is 0. 55 
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and / alpha is 0.00013 in this case. Assurne only linear search 
is conducted and the cost to match each field is equal for 
both D2BS and MC-SBC. With D2BS, the cost to find a 
match result is: 0.5515 . 100000· 15 = 191 unit cost and the 
storage requirement is: 0. 5515• 100000 . 215 = 417725 unit 
space. With MC-SBC, the cost to find a match result is: 
0.5515. 100000(2 +0.00013 ·15) = 26 unit cost and the storage 
requirement is: 2 . 0.5515 . 100000 = 835450 unit space. By 
doubling the space requirement, MC-SBC could decrease the 
time complexity to about one seventh of the original value. 

6.2 Experimental Results 
In this section, MC-SBC is compared with other solu­

tions in terms of data structure and system performance. 
The off-li ne rule programming stage in MC-SBC generates 
lookup tables for the on-line packet classification stage. The 
lookup tables are similar concepts with trees in decision­
based solutions. The subset of each lookup table is actually 
the lead node in a decision tree. To show the efficiency of 
those lookup tables, MC-SBC is compared to those exist­
ing decision-based solutions with three key parameters: tree 
depth (Dt), replication ratio (f), and the maximum number 
of rules stored on a leaf node (binth). The on-line packet 
classification stage in MC-SBC affects the overall system 
performance. To keep the f1exibility of implementation with 
high system throughput, MC-SBC is implemented on a GPU 
with different optimization strategies. Moreover, MC-SBC 
is compared with other many-field packet classification solu­
tions on different platforms using the synthetic rulesets with 
same setting. 

6.2.1 Experiment Setup 

All experiments are conducted on an Intel Xeon E5410 
CPU machine with 4GB DDR2 RAM as the main mem­
ory. This machine is equipped a NVIDIA K20C GPU [14] 
with 13 streaming multiprocessors (SMXs) and 5Gb GDDR5 
memory for general computation. Each SMX has 192 single­
precision CU DA cores, 64 double-precision units, 32 special 
function units, and 32 load/store units. Besides, MC-SBC 
is implemented on the Debian 7.3 64-bit operating system 
with Cuda 7.0 as the software development environment. All 
necessary packets and tables are assumed to be ready on 
GPU before the packet classification process starts. This is 
a feasible and practical assumption because in the network 
system there are an abundant number of packets buffered 
to be processed in a network system [29] . In this paper, the 
synthetic rulesets are generated by taking ClassBench ruleset 
for the traditional 5-tuple first [26] . We attach 10 additional 
fields with wildcard ratio as 0.1 and the unique values setting 
as in [18] to those ClassBench rulesets to create the synthetic 
rulesets for the experiments. 

6.2.2 Off-line Rule Programming Results 

The off-li ne rule programming stage determines the size of 
each subset in a lookup table and impacts the overall system 
performance. The characteristics of a ruleset and the select­
ing criteria both play key roles at this stage. Both ideal and 
synthetic rulesets are verified to show the mixed interaction 
between system setting and varying ruleset characteristics. 

6.2.2.1 Results with ideal rulesets. 
An ideal ru leset provides more effective bits compared to 

practical rulesets and the distribution of rule IDs are evenly. 



# Wildcard 
Binth Candidate Rules 

of Ratio 
SampIe Space - 1 SampIe Space - 2 

Subsets (%) 
Space size (bits) Space size bits) 
5 10 15 5 10 15 

0 156K 4K 108 4K 5 11 

2 0.1 157K 4K 156 5K 6 1 
1 164K 5K 178 6K 11 1 
10 251K 12K 640 23K 280 4 
0 39K 1K 27 1K 2 1 

8 0.1 39K 1K 39 1K 2 1 
1 41K 1K 45 1K 3 1 
10 62K 3K 160 5K 70 1 
0 9K 306 10 306 1 1 

32 0.1 9K 310 10 315 1 1 
1 lOK 355 12 405 1 1 

10 15K 793 40 1K 18 1 

Table 4: Binth and candidate rules for a ruleset with 10 M 
rules by giving different subset and space size settings. All 
fields in the ruleset varying with the field wildcard ratio for 
each setting. Binth shows how many rule are stored in a leaf 
node of a sam pIe space. Candidate rules are the intersection 
results of any two sampIe spaces. 

The analysis of ideal rulesets can show a trend to design a 
MC-SBC system. The binth of a lookup table is affected 
by bit position wildcard ratio, subset size, sampIe space 
size, and the number of lookup tables. We evaluate field 
wildcard ratio ranging from 0.01 % to 10%. The evaluation of 
ideal ruleset is summarized as in Table 4. More subsets and 
bigger sam pie space will decrease the number of rules stored 
in each leaf node (binth) for higher system performance. 
However, the wildcard ratio for each field in a ruleset increases 
binth and results in longer processing latency and a higher 
memory requirement. By changing these design factors, an 
improved system could found with a trade-off between system 
performance and memory requirement. 

6.2.2.2 Results with synthetic rulesets. 
The evaluation of MC-SBC with synthetic rulesets is con­

ducted to compare the data structure of MC-SBC with 
other well-known algorithms like BC, SBC, Hi-Cuts, and 
Hyper-Cuts to show the effectiveness of the proposed system. 
MC-SBC is implemented with 3 major types of ClassBench 
rulesets. The trade-off between binth and f helps a designer 
to choose a setting which is suitable for the implementation 
environment. 

Figure 7a shows the maximum number of rules per leaf 
node and Figure 7b shows the maximum replication ratio in 
a sampling space with subsets. The number of rules per leaf 
node (binth) decreases when the number of subsets increases. 
Binth also increases when the number of rules in a ruleset 
increases. The replication ratio increases when the number 
of subsets increases. However, it does not increase when the 
number of rules in the same ruleset increases. The proposed 
method controls the replication ratio to achieve better scal­
ability in terms of storage, and provides the f1exibility to 
trade the number of subsets for the number of rules stored 
in a leaf node, at the cost of memory storage. Besides, the 
binth of synthetic ruleset is bigger and does not decrease as 
fast as the ideal ruleset. When more effective bits are chosen, 
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Threads-Block i n  GPU 

Figure 8: System throughput of GPU prototype implemen­
tation with varying GPU thread-block setting. 

the dependence between effective bits becomes stronger and 
it weakens the effectiveness of MC-SBC. 

MC-SBC is compared with other decision-tree-based so­
lutions such as BC, SBC, HiCuts, and HyperCuts. Table 5 
shows the comparison result with other algorithms. All al­
gorithms are set to have the same nu mb er of rules stored in 
a leaf node (binth) to count accesses of tree traversal (Dt) 
and the rule replication ratio (f) . The proposed method 
(MC-SBC) is able to maintain the same level of binth and 
replication ratio with lower and deterministic tree depth and 
fast searching time. 

6.2.3 On-fine Packet Classification Results 

A GPU prototype is implemented to show the performance 
of the proposed system with comparisons to the other many­
field packet classification solutions on different platforms. 
Each packet is designed to have 15 fields in it and the size of a 
packet header is 354 bits as defined in OpenFlow. The system 
throughput is calculated based on the processing time of GPU 
kernel by CUDA Visual Profiler. The time duration of the 
GPU kernel is used as process latency for packet classification 
process. We make an assumption that packet data could 
be pre-Ioaded into GPU memory. This is a feasible and 
practical assumption because in a network system there are 
abundant packets in a network device waiting to be processed. 
Therefore, we can pre-Ioad packet data to hide the transfer 
latency. However, the up and coming memory architectures 
may remove this bottleneck and aHow for the fuH performance 
potential of MC-SBC. To avoid the performance penalty of 
kernel synchronization, we implement only one kernel to run 
both pre-filtering and fuH match with buffers to store packet 
subset indices, packet sampIe values, and suspected packets. 
Once the prefiltering process is done, the same kernel is going 
to run full match process and report the match results for each 
thread. Figure 8 shows the impact on system performance 
with different GPU thread-block setting. MC-SBC is able 
to rnitigate the variance between different types of rulesets 
and generate consistent performance. Besides, MC-SBC is 
also able to utilize the massive computation platform by 
generating a higher system performance with more threads 
and higher instructions level parallelism. 
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Figure 7: The experimental maximum number of rules per leaf node (binth) and the replication ratio (f ) by dividing a ruleset 
into 1 to 128 subsets with 15-bit sampie space for each subset 

.l::5C I �.I::5C HiCuts I HyperCuts J\IlC-�.I::5C 
Ruleset binth b-held ruleset l b-held ruleset 

Ut t Ut t ut t ut t ut t 
AGL_I K  0 5 \J 5 0 00 :w 17 5 :l 1:l 

AGL_1oK 1u 5 41 5 :l5 oJ J4 14 J :l 10 
ACL_100K 46 5 93 5 56 55 106 14 7 2 21l 

FW_1 K 11 5 42 5 27 64 91l 22 3 2 12 
FW_1o K 17 5 157 5 107 63 454 11l 122 2 29 

F W_I UUK 54 6 70113 0 6:l37 115 151514 I II  1l:l5 :l 41l 
It'G_1 K  5 5 1:l 4 10 7U 11 :l:l J :l 0 

It'G_IUK 10  0 00 0 JJ 71:S :l7U 1\J :l7\J :l l U  
It'G_1 UUK J\J 0 :ln 0 1u1 (0 (JI:S 11:S J5\J :l 10 

Table 5: The comparison between different algorithms: Boundary Cutting(BC), Selective Boundary Cutting(SBC), HiCuts, 
HyperCuts [12] , and Multidimensional-Cutting Via Selective Bit-Concatenation(MC-SBC) 

Based on the observation of ClassBench rulesets, we can 
find that a field normally has less than 10% as wildcards 
for a ruleset. However, the wildcard ratio of a field does 
impact the effectiveness to sampie a ruleset to construct 
operational lookup tables. Hence, the system performance 
and memory requirement for varying number of rules with 
different wildcard setting is shown in Figure 9 to show the 
feasibility of the proposed system. Normally, only few fields in 
a ruleset are with high wildcard ratio compared to other fields. 
MC-SBC can mitigate this problem by finding only effective 
bits. In Figure 9, all field are set up with a high wildcard 
ratio as the worst scenario and MC-CBS still maintains a 
good scalability in term of wildcard ratio. 

Figure 10 shows the comparison of system throughput 
with other many-field packet classification algorithms such as 
GPP-BV [18] and GPU-BV [19] . The processing latency is 
about 4 ms in GPP-BV when processing 64 packets with 32 K 
rules and is about 22 ms in GPU-BV when processing 81920 
packets with 32 K rules. However, the processing latency 
of this work is about 80 ms when processing 26624 packets 
with 32 K rules. The proposed system is able to maintain 
scalability with the increasing ruleset size and the growth 
field number in a ruleset. Although FPGA solutions [5] [19] 
are with a higher throughput (upto 650 MPPS), the FPGA 
platform is constrained by its limited memory space and 
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Figure 9: System throughput and memory requirement of 
GPU prototype implementation for different 15-field rulesets 
with varying wildcard setting. 
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Figure 10: The comparison between GPP-BV [18] , GPU­
BV [19] , and GPU-MCSBC(this paper). 

can only support a ruleset with around 1 K  15-field rules 
in it. Hence, the comparison with FPGA platforms is not 
conducted here. 

7. CONCLUSION AND DISCUSSION 
In this paper, we present a many-field packet classifica­

tion algorithm by extracting only few candidate rules for 
full match process to improve the system performance. The 
proposed method converts a huge and biased rule space 
into several small subsets by using key selecting metrics to 
construct flat data structures for fast processing and easy 
updating. Both data structures and matching processes in 
the proposed system are designed for massive computation 
platforms to hide short latency tasks behind a long access 
latency task for a better system performance. The proposed 
method is examined with ideal and synthetic rulesets with all 
key factors related to system performance. Besides, the cut­
ting resuIts are compared with weil known cutting algorithms 
to show the effectiveness. The throughput of GPU proto­
type achieves around 198 MPPS for lK 15-field rules and 
around 163 MPPS for lOOK 15-field ruleset. The prototype 
result is also compared with other many-field implementa­
tions in terms of scalability and throughput. This paper 
demonstrates the feasibility of Openflow-based SDN switches 
using software-based packet classification instead of TCAM 
solutions. 
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